
NOTATION 

~, ~, wx,length, amplitude, and velocity of motion of a wave; ps Us o, density, co- 
efficient of dynamic viscosity, and specific surface energy of the liquid that is breaking 
up; k%, proportionality factor in the expression ~ = kk kmin; D, diameter of the liquid 
drops and jets breaking up; We ~ ~ambV2D/o, Weber number; Were ~ PambV~eD/o, reduced Weber 

number; Lp ~ p~Dq , Laplace number; Pamb, density of the oncoming gas stream;v, relative 

Z 
velocity of the oncoming stream; T, time; S, path length traveled by the wave; t, character- 
istic size of the volume breaking up; 8, angle between the point under consideration and the 
frontal point on the surface volume breaking up in the polar coordinate system. Indices: s 
liquid; amh, ambient medium; gr, growth, mo, motion; o r ,  critical; min, minimum; i, 2) first 
and second breakup conditions; re, reduced. 
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~NALYSIS OF SELF-SIMILKRL~INAR FLOWS IN 

SLOT CHANNELS WITH ONE PERMEABLE WALL 

P. A. Novikov and L. Ya. Lyubin UDC 582.542.2:532.546 

An analysis is made of  the fluid flows in a plane slot permeable channel. 
It is shown that for large numbers R (suction) self-similar solutions exist. 

Plane and axisy~Lmetric laminar flows are observed in many modern engineering elements 
[i, 2]. These are systems of "porous" effusion cooling, heat pipes, heat exchange sublima- 
tion apparatus, apparatus for thermostatic regulation of !ar~e-scale objects [3, 4~, and 
distributive collectors of heat exchangers [5]. It is difficult to assume a uniform dis- 
charge distribution of the heat carrier in channels without analyzing the flows in such ap- 

paratus. 
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~' [ ~ ~  Fig. i. Profiles of the function 
2,0 i f'(D) proportional to the longi- 

tudinal velocity component u in a 
/ 

i__ plane channel with unilateral suc- 
~0 ---- 2 tion of different intensity: i) 

R~0 = 1.5; 2) 6.3; 3) 12.4~ 4) 
4~ - ~ 13.2; 5) 13.8; 6) 14.5. 

I 

A c o m p u t a t i o n a l  a n a l y s i s  o f  p o s s i b l e  s e l f - s i m i l a r  l a m i n a r  f l o w s  in  p o r o u s  p i p e s  f o r  
homogeneous  b l o w i n g  and s u c t i o n  c h a r a c t e r i z e d  by d i f f e r e n t  v a l u e s  o f  t h e  number  R i s  e x e -  
c u t e d  in [6], where it was shown that for both suction (R > 0) and blowing (R < 0) several 
solutions of the problem exist. A range of numbers R was here set up for which stationary 
self-similar flows do not exist. Plane and axisymmetric self-similar flows that occur for 
unilateral blowing in a slot channel were studied in [i, 7]. The qualitative analysis of 
the solution executed for large numbers R does not yield practical information about flows 
with unilateral suction. 

To obtain a complete portrait of the possible self-similar stationary flows in slot 
channels with one permeable wall it is necessary to investigate plane and axisymmetric 
flows due to the suction of substance through one of the channel walls. 

As is known [8, 9], the longitudinal u and transverse w velocity components of a self- 
similar flow in a slot channel can be represented in the form 

I x 
u . . . .  I w I / ' ( n ) ,  ~ = I w I f ( n ) .  ( 1 )  

m H 

The function f(D) is a soiunion o! the boundary-value problem for the differential equation 

f " ' - -R ( f f "  l f ' 21~k .  (2 )  
m / 

Here  t h e  p a r a m e t e r  m = 1 and m = 2 in  t h e  p l a n e  and a x i s y m m e t r i c  p r o b l e m s ,  x ,  z a r e  t h e  
longitudinal and transverse coordinates, D = z/H; H is the height of the slot channel, w 
is the transverse Velocity components on the permeable wall z = H (positive for suction), 
and R = wH/v is the Reynolds number. 

The boundary conditions are 

f ( 0 ) = 0 ,  [ ' ( 0 ) = 0 ,  [(1)=signw, [ ' (1)==0.  (3 )  

The s t u d y  o f  a l l  p o s s i b l e  s e l f - s i m i l a r  f l o w s  in  a s l o t  c h a n n e l  r e d u c e s  t o  a o n e - p a r a -  
m e t e r  analysis (the pressure gradient parameter k is kept in mind here) for whose numeri- 
cal realization it is expedient to replace the nonlinear boundary-value problem (2), (3) by 
the Cauchy problem 

F'" + 1 F '~ -FF"=K,  (4 )  
m 

F (0 ) : = 0 ,  F ' ( 0 ) = 0 ,  F" (0) = (--1)". ( 5 )  

The primes here denote differentiation with respect to the new dimensionless variable ql = 
b~, and F(Dz) = A-if(q). It is assumed that 

b k 
- - - - - R ,  b~A=_+f'(0), - - = K .  (6) 
A baA 

To a n a l y z e  f l o w s  due t o  t h e  i n j e c t i o n  o f  f l u i d  t h r o u g h  a p e r m e a b l e  w a l l ,  i t  i s  n e c e s -  
s a r y  t o  t a k e  n = 1, w h i l e  K i s  v a r i a t e d  w i t h i n  t h e  l i m i t s  o f  t h e  p o s i t i v e  s e m i a x i s  (0 ,  +~ ) .  
P r o f i l e s  o f  t h e  l o n g i t u d i n a l  v e l o c i t y  componen t  u ,  p r o p o r t i o n a l  t o  f ( ~ ) ,  w i t h  an i n f l e c t i o n  
p o i n t  c o r r e s p o n d  t o  p o s i t i v e  v a l u e s  o f  t h e  p a r a m e t e r  K d u r i n g  s u c t i o n  in  a p l a n e  s l o t  c h a n n e l .  
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2. Change in the profile of the function f"(1) as a func- 
of the suction intensity: i) f"1(0)/R10; 2) f"1(1)/R10. 

Fig. 3. Dependence of the pressure gradient parameter H on the 
suction intensity: I) Plane problem; II) axisymmetric problem; 
III) suction; IV) blowing. 

Among such regimes are flows with a recirculation zone abutting the impermeable wall. To 
find such flows n = 0 is given. An analogous assumption is also made in the remaining cases. 

For n = 0 and R > 0 (suction), exactly as for n = i and R < 0 (blowing), Eq. (4) is in- 
tegrated to the second zero ql = ~12 and for n = i to the third zero ql =Dl3' ~ the functions 
F'(D~) F'(DIj) = 0; rill = 0 (the upper limit of integration nli corresponds to the permeable 
wall). The Reynolds number R characterizing the suction (blowing) intensity and the pres- 
sure gradient parameter H = H38P/Sx/pvwx (p is the fluid density) are calculated from the 
formulas 

R = ~]~sF(~s), ~ K~s 
m F  (~1.i) " 

Profiles of the function f'(n) are shown in Fig. i; for R+0 these profiles degenerate 
into a parabola symmetric with respect to the middle plane of the channel (q = 0.5), i.e., 
as a Poisseuille longitudinal velocity distribution is realized for low-intensity blowing 
(R+0), here H+I2. As the number R grows, the maximum of the longitudinal velocity compo- 
nent shifts towards the permeable wall, which is accompanied by an increase in the friction 
stress proportional to the function fll(1) (see Fig. 2). The friction stress on the im- 
permeable wall fll(0) decreases with theKrowth of the number R and for R+R I = 6.3 the cur- 
vature of the profile of the longitudinal velocity component tends to zero near the imper- 
meable wall. A zero value of the parameters K and H corresponds to this regime. Consequently, 
~ virtue of (4) and (5) even in that case flll(0) = 0. Therefore, the passage through R = 

is accompanied by the appearance of an inflection point on the profile fl(q), which 
moves from the impermeable wall to the middle plane as R grows. 

For RtR II = 13 the function proportional to the friction stress is fll(0)+0 and FII(0) < 
0 for R > R II, i.e., the appropriate solutions describe flows with a reverse flow zone 
whose width increases as the number R grows (see Fig. i). 

The dependence of the parameter n on the number R is shown in Fig. 3. For R < 14 it is 
practically linear and is a smooth continuation of the corresponding dependence for unila- 
teral blowing (R < 0). For - ~ < R < R I H > 0, i.e., a ~ressure drop in the direction of 
the main stream corresponds to these regimes. For R > R • in a plane channel, the pressure 
growth due to a diminution in velocity (Su/~x < 0) predominates over its drop because of 
the viscous dissipation. 

In the range R Ill < R < R TM (R!I I = 14.i; RIV= 14.6), three solutions correspond to 
each value of R and can generally be characterized by substantially different parameters H. 

For R > R IV the modulus of the parameter H (Fig. 3) grows monotonically to the right of 
the mentioned interval while the solutions fI(N) approximate half a sinusoid in shape as 
R+=, i.e., for large numbers R fully recirculation flows will be observed in a plane channel 
according to the self-similar solutions considered, and all the fluid being sucked from 
the channel should flow only in a thin layer along the permeable wall. 
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Fig. 4. Profiles of the longitudinal velocity compo- 
nent in the gap between discs for unilateral suction 
of different intensity: i) R = 0.9; 2) 1.3; 3) 4.3; 4) 
7.8; 5) 13.2; 6) 21.6; 7) 29.4. 

It is known from the theory of hydrodynamic stability of parallel flows that the pre- 
sence of an inflection point in the velocity profile is ordinarily the criterion for laminar 
flow instability. Consequently, it can be expected that flows corresponding to the self- 
similar solutions considered are unstable for R > R II although, as is shown in [i0], the pre- 
sence of a transverse velocity can noticeably deform the boundaries of the stable regimes 
found from the solution of the Orr-Sommerfeld equation for a parallel flow with the same 
distribution of the longitudinal velocity component. Moreover, it should be taken into ac- 
count that for the physical realization of self-similar flows for large positive numbers R, 
it is necessary to assure an appropriate velocity distribution at the input to the plane 
channel since flow stabilization occurs on a section of length ~0 = 0.04 ReH (this is con- 
firmed in [ii] by a numerical experiment for a channel with a permeable wall), Where Re is 
the Reynolds number constructed with the mean longitudinal velocity component with respect 

H 

to the section <u> = f udz, while the characteristic dimension ~ is the distance between 
0 

the entrance to the channel and the section under consideration. Therefore ~0/s ~ 0.04 R, 
i.e., for sufficiently large numbers R the lengths s and s are commensurate. Experiments 
[12] performed on a porous pipe with suction showed that turbulent fluctuations occur near 
the wall almost simultaneously with the appearance of the reverse flows. 

The axisymmetric flow pattern in a slot channel for unilateral suction and blowing is 
substantially simpler than that described above. The longitudinal (radial) velocity compo- 
nent profiles in the gap between discs with unilateral suction of different intensities are 
shown in Fig. 4. For R+0 these profiles degenerate, in the plane case, into a parabola 
symmetric with respect to the plane q = 0.5, and the parameter Hi6. The increase in R from 
0 to ~ is accompanied by monotonic deformation of the parabolic profile fI(n) into a tri- 
angular with vertices at the points ~ = 0 fI(o) = 0 and n = 1 fI(1) = 2 on the impermeable 
and permeable walls, respectively. The parameter ~ (Fig. 4) here decreases monotonically 
to zero. In the axisymmetric case the hydraulic losses always predominate over the pres- 
sure rise due to a diminution in the velocity (N > 0). 
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PROPAGATION OF A PLANAR SHOCK THERMAL WAVE IN 

A NONLINEAR MEDIUM 

O. N. Shablovskii UDC 536.2.01 

Conditions are analyzed for a strong discontinuity of a thermal field in a 
nonlinear medium, possessing thermal relaxation. The solution of the heat- 
transfer equations is obtained in the region between the mobile boundaries 
and the front of the strong discontinuity. 

i. Analysis of Strong Discontinuity Conditions of a Thermal Field. The heat-transfer 
equations in a medium with a relaxing thermal flow [I, 2] are written in the following form 
for one-dimensional processes with planar symmetry 

ph t §  q~ = O, 9, ?- -cons t ,  (1)  

T T 

L ~ q - g q , + q = O ,  h =  fc~(T)dT, L =  I)~(T)dT. (2) 

Shock thermal waves can be generated in nonlinear media possessing thermal relaxation [2, 
3]. In particular, an important object of application of the heat-transfer model (i), (2) 
are thermal perturbations in liquid helium [4, 5]. It is well known that second sound 
shock waves can occur in liquid helium at temperature 1.2K < T < 2.0K; the physical analysis 
of this effect and a bibliography are given in [5, 6]. In the presence of relaxation pro- 
perties of the medium surfaces of strong discontinuity are also formed in other physico- 
mechanical processes, for example, in liquid filtration [7]. This question is discussed in 

[2 ] .  

To obtain conditions of dynamic compatibility at the strong discontinuity line of the 
thermal field the energy conservation law must be selected in integral form, and then the 
method of [8, 9] must be applied: 

N {9/~} ::-~ {q}, N = dx/dt. (3) 

Here the brackets denote the jump of the corresponding functions during transition through 
the strong continuity line x = xj(t). 

Also possible are statements of the heat-transfer problem, in which the single condition 
(3) is insufficient to guarantee uniqueness of the solution, and, according to [9], an addi- 
tional relation is required at the discontinuity. 
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